Elementary maths for GMT

Calculus

Part 2.1: Integrals

The primitive

- A primitive function $F(x)$ of a function $f(x)$ is defined by

$$
F^{\prime}(x)=f(x)
$$

- Any function $F(x)$ whose derivative equals $f(x)$ is a primitive of $f(x)$
- The primitive is often called the antiderivative, because you find a primitive by 'inverting' differentiation

Example

$$
\underset{\substack{\uparrow \\ \text { primitive }}}{F^{\prime}(x)=f(x)}
$$

x^{2} is a primitive of $2 x$ $x^{2}+4$ is a primitive of $2 x$ $\sin x$ is a primitive of $\cos x$

The primitive

- If F is a primitive of f, then every function $G(x)=F(x)+C$ is also a primitive of f for every constant C, because $G^{\prime}=F^{\prime}=f$

The integral

- The collection of all primitives of $f(x)$ is called the indefinite integral and denoted as

$$
\int f(x) d x
$$

- So

$$
\int f(x) d x=F(x)+C
$$

Examples

- The indefinite integral can be found by 'inverting' differentiation

$$
\begin{aligned}
& \int 2 x d x=x^{2}+C \\
& \int x^{3} d x=\frac{1}{4} x^{4}+C \\
& \int \cos x d x=\sin x+C
\end{aligned}
$$

Properties

- The integral is a linear operation

$$
\begin{aligned}
& \int c f(x) d x=c \int f(x) d x \\
& \int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x
\end{aligned}
$$

- Example
$\int(2 \cos 3 x+5 \sin 4 x) d x=$
$2 \int \cos 3 x d x+5 \int \sin 4 x d x$

Differential form

- The problem $\frac{d y}{d x}=f(x)$ for
unknown $y=y(x)$ can often be solved by taking the integral of both sides:

$$
y(x)=\int f(x) d x+C
$$

Example

- Solve $\frac{d y}{d x}=2 x+3$, with $y(1)=2$
- Solution
- Integration gives

$$
y(x)=\int(2 x+3) d x=x^{2}+3 x+C
$$

- For $\mathrm{x}=1$, the substitution gives

$$
y(1)=2=1+3+C
$$

- So $\mathrm{C}=-2$, and finally

$$
y(x)=x^{2}+3 x-2
$$

The definite integral

- The definite integral is defined by

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

- Example

$$
\int_{1}^{2} 2 x d x=\left[x^{2}\right]_{1}^{2}=2^{2}-1^{2}=3
$$

The definite integral

- Application: The definite integral equals the area under a function

Example

- The definite integral $\int^{2} 2 x d x=\left[x^{2}\right]_{1}^{2}=2^{2}-1^{2}=3$

